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ABSTRACT

The performance of aircraft engines is known to deteriorate rapidly
when they operate in areas where the atmosphere is laden with solid
particles. The particles may be sand, dust, ash, chemical products or
others. Continued operation under such conditions can erode the engine
components surfaces and reduce the reliability and life of the engine. 1In
recent years, interest was renewed in the use of ceramic¢s for gas turbines
components. The need for the knowledge and better understanding of material
erosion behavior is necessary for the use of these materials in future
engines with confidence. The present experimental investigation presents a
detailed study of the erosion behavior of a typical ductile material (steel

AM355 alloy) and a non-ductile (brittle) material (A1203). The experimental

results show the influence of the particle size, particle velocity and
temperature on the erosion rate. Electron micrographs of the eroded
surfaces under the various conditions are presented and compared. Empirical

correlations for the erosion results are also presented.
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INTRODUCTION

Many of the models for ductile materials erosion stem from the study of
single particle impact. The best known erosion mechanisms are plowing
deformation [1, 2, 3], usually caused by angular particles, cutting
deformation type I [4], cutting deformation type II [2], and local
melting [5, 6]. The above classification of the first three modes of
deformation is best illustrated in reference [1] by a series of high speed
photographs and by the outlines of the crater sections. Finnie (7]
concluded that the erosion mechanism is one of cutting or micro-machining.
The sharp corners of individual particles act as miniature single point
tools. He developed an expression for the erosion rate (Q) which is
proportional to the total available kinetic energy of the particle and

inversely proportional to the minimum flow shear stress:

Q=Cf (a) MVZ/o

where: C = constant for specific erosion system,

f(a) = function of angle of attack,
M = mass of particle,
V = particle approach velocity,
0 = minimum flow stress related to that measured, in a tension or

compression test.
Finnie's equation is not suitable for predicting the erosion rate at normal
angle of attack. Also, the veloclity exponent has subsequently been found to
be generally different from 2.0. Bitter [8] obtained better fitting
equations to the test results by modifying Finnie's original relationship
using two separate relations to express the wear due to the repeated
deformation, and that due to the cutting action. Nielson and Gilchrist [9]

also utilized the idea of both cutting and repeated deformation to develop a
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simpler set of equations. Head and Harr [10] concluded that while the 5:$S¢
rigorous models such as Bitter's model are useful in identifying important R
parameters, they do not adequately describe erosion by naturally occurring f§i§:
contaminants due to their non-homogeneous nature. They described the data éEESE
in a statistical manner and developed a model that fits their experimental ’ﬁkh;
data reasonably well. The parametric relationship used in their analysis E;E
was determined using the Buckingham Pi theorem. More recently, Levy [11] s?g:“

RN

R

demonstrated that the erosion of ductile metal alloys by small impacting e
solid particles is not by micromachining but is a result of the extrusion

and forging of thin platelets which are subsequently knocked off the

surface. _
The mechanism of brittle materials erosion is one of constant battering S;;j?
ARAR
and fatigue leading to surface cracking and spalling of the target surface. E%;:E
Microstructural examination of target surface have validated this theory. :: ;_
Brittle materials, exposed to single impacts have been treated as static and %}gx.
dynamic plastic indentation. The plastic indentation is characterized by EESﬁE
’
plastic deformation of the contact area between the particle and the target, %?
o
with radial cracks propagating outward from the contact zone, and with EE:Ei
surface lateral cracks propagating outward on planes nearly parallel to the Eﬁiﬁ:
surface. The former are considered a source of strength degradation and the N‘h‘;
latter a potential source of material removal. Evans [12] analyzed the ;&;23
erosion mechanism of brittle materials at high angles of attack and treated S;téi
the phenomenon as plastic indentation. This plastic deformation of the et
contact zone between the particle and target promotes radial cracks which é:ﬂ?ﬂ
propagate away from the zone. Subsurface lateral cracks run on the planes 5:%;’
’
nearly parallel to the surface. This type of damage, which is referred to .
NN
as elastic-plastic, has been observed to be caused by the impact of the i:as:
5
3 —
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angular particles of generally greater hardness than the target }3;'
SN
N3
material [12]. At low angles of impingement, it has been reported that the " s
V' -
primary mechanism of erosion for brittle materials is plowing [13] in a agf;
' .\"*
manner similar to the one described for the erosion of metals. Based on the ngt
WY
elastic-plastic analysis, two models by Evans [14] and Ruf and EalCet
U
Widerhorn [15] have been proposed which relate the erosion volume to both Q::ﬁ
Ryl
-?‘f‘."
target and particle mechanical properties. Diamond [16] tested sintered ;;{;;
P":“:'l‘
alumina, basalt, and glass at ambient temperature. The i{mpingement angles e
» ;.'
ranging between 15° and 90° at a mean particle velocities of 46 m/sec and 40 ::;J:
v
m/sec for SiC and Si0 particles. Dimond's plot of the experimental results ;fisj
NN
according to the Evan's model fits equally as well as to that of Ruff and =
e o
Wiederhorn. |
Effect of Target Material Properties -
Finnie [17] proposed that high hardness results in greater erosion :iji
. *\‘
wt 1\ -
resistance, but this basic premise has been disproved for metallic alloys by }:}&;
POy
A
Christman and Shewman [18], Stalik and Buckley [19]. Levy arrived at the fAM#
B Y
AN
following conclusions in his recent study [11]: {;ﬁl
e
1. The strength and hardness of ductile metals, except for solid solution .;::
'b J"
strengthened alloys, do not directly correlate with the erosion .
SEIAY
O A
resistance of alloys. SASAN
A SRS
LGSR
2. A sub-surface, cold worked zone which acts as an anvil to increase the ;::}\
aur’al
erosion efficliency of the impacting particles is developed by the
‘:\"_\-
plastic deformation which results from the force applied by the 5:}:‘
l.. AW )
impacting particles. ;ﬁatf
2%
3. The strain hardening coefficient of alloys relates to how soon the —
AN
alloys reach a steady state erosion condition, i.e., to the development ‘:‘:‘
AN
\';-."\
.
v
y o
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of their sub-surface cold worked zone, but not the magnitude of the

steady state erosion rate.
Tilly [20] has shown that some brittle materials tend to become less

resistant at higher hardness.

Effect of Particle Velocity

The effect of particle velocity on erosion rate was first observed by
Stoker [21], in 1949, and has since been an important parameter in most
erosion investigations. Finnie [22] assumed that erosion loss is
proportional to the kinetic energy of the erosive particle and, therefore,
erosion loss would be proportional to the square of the velocity. Velocity
exponents greater than 2 were determined in subsequent investigations.
Sheldon [23] measured velocity exponents for ductile materials in the range
of 2.4 to 2.7, while Finnie [17], Sheldon and Kanhere [24], and Goodwin [25]
found velocity exponents as high as 3.0. Grant [26] measured a velocity
exponent of 4.0 for normal impacts of alumina particles on a 2024 aluminum
target. Wakeman [27] and Tabakoff [28] demonstrated that for ductile
materials the velocity exponents are strongly dependent of the temperature
and the impingement angle.

For brittle materials, existing erosion models are based on the
analysis of the volume of materials removed by the lateral cracks in single
particle impact. Interaction effects are assumed to be negligible so that
the cumulative effect of multiple impacts is obtained by summing the volumes
removed by individual impacts. Two quantitative models were developed for
predicting the erosion of brittle materials. One is based on the analysis
of the quasi-static indentation and the upper bound quasi-static impulse

load [29, 30]. The second model is based on a dynamic analysis of the
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elastic, plastic stress field [31, 32). Marshall [33] confined his interest
S
to particle size and velocity effects in a given projectile target system b

and derived a new relation. He found that the erosion volume loss is

proportional to particle velocity to the power 3 for SiC particles impacting k
single crystal silicon target material perpendicular to the surface. i;¢;,€
Gulden [34] obtained a relationship between the particle radius and its ,QN
velocity and the resulting erosion. He tested natural quartz particles '3*
using six particle sizes ranging between 10 and 385 microns at five a?' f

different velocities ranging between 24 m/sec and 285 m/sec (79 ft/sec and

935 ft/sec) to arrive at his relations.

¢
vr Al
Effect of Particle Size :}'
o
\ .
For brittle materials, Sheldon and Finnie [35] reported an exponential r}!p-
o,
hY

relationship between the erosion volume 1033 and the particle radius. The

values of the exponent ranged between 3.14 to 5.12 for spherical particles ;ﬁ;
and 3.58 to 4.25 for angular particles. It was observed that the material ?h ,;
may exhibit a transition from the brittle to the ductile behavior when Aol
eroded by progressively smaller particles [36]. Marshall [33] also 'E

N

expressed the erosion rate in terms of the particle diameter.
For ductile materials, Sage and Tilly [37], Grant and Tabakoff [26] and
Kotwal and Tabakoff [38] found that at a given particle velocity, erosion

increases with increased particle size until the onset of a "saturation

plateau". However, Sage and Tilly [37] reported that for the brittle

»
)
4

KN
material, there {s no plateau value, and the erosion rate is proportional to ;:}.j
.: \.: Cd
the square of the particle diameter. One can therefore conclude that }:}:ﬁ
"y *
b YN
generally the value of the exponent strongly depends on the target and ’J‘
"
particle material. AN
-r":‘-r
Ay
.-:‘.-::
FAC)
Yy
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=
Effect of Temperature ; :ﬁ
Very few studies investigated the effect of target material temperature E&ﬁﬁr
on erosion rate mostly through heating the target using electrical -::3
resistance. In most cases, the maximum temperature was less than 816°C §E¢E'
; (1500°F), and the target temperatures were not in excess of 0.5 times of the ‘Lioﬁ
material melting temperature. ;:;*
Theoretically, Bitter [8] has indicated that the energy required to Etng
remove a unit volume of material is strongly dependent on temperature. As ,Tééﬁ
temperature rises, the erosion goes up. Bitter [8] explains that this ;Tﬁﬁ
phenomenon depends on the recovery of lattice dislocations which takes place
at higher rate as the temperature rises. When recrystallization temperature E;éﬁ
is exceeded, erosion is infinitely large. For brittle material, :S;&;
heterogeneous materials such as cement, Bitter predicted that erosion is chgz
dependent on the strength of the bonds between the cement conglomerates, §;L£:
thus scarcely depending on temperature. Tabakoff and Vittal [39] tested $S:E§
INCO 600 materials at the temperatures of 700, 920 and 1070°F, and found EE E}
that the erosion rate at these temperatures is much higher than at the ESE:L
ambient temperature. Gat [U40] concluded that erosion rate may decrease or g;gh;.
increase with increased temperatures depending on the material properties Q%:!
and impact condition. Tabakoff and Wakeman [41] investigated the erosion of Eut
different alloys at high temperatures. Additional experimental data are :A;§%
presented in references [27] and [28]. “'ﬁt\:‘,‘?
Presently available data on the erosion experiments at high s
temperatures are summarized in Table 1 which lists the target materials,
target temperatures, particle materials, sizes, velocities and angles of
attack.
7
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Effect of Particle Hardness and Shape

Goodwin [25] suggested that since hardness and shape are interrelated,
the erosiveness of a particle is given by a power law:

Ea H2'3

where:
E = erosion rate
H = diamond pyramid hardness

. Grant [26] observed that erosion rates are 48% to 68% smaller for SiO2
(quartz) than for A1203 (alumina) particles. Head [42] found that fluorite

(CaFZ) particles are more erosive than alumina (Al ) particle. He

203
concluded that some properties, other than hardness must be considered in

determining relative erosiveness, since the hardness of CaF., is 4 and A120

2 3

is 9 on Moh's scale. Also, Wood [43] suggested that erosion decreased with

[

increasing hardness.

R S e N G

i

Effect of Impingement Angle

During the early studies it was found that the erosion rate increases
from zero angle of impingement to a maximum at approximately 25 to 30
degrees for a ductile target material. The erosion rate then decreases as
the angle is further increased until a minimum and a non-zero value is
reached at a normal (90°) impingement angle. For brittle materials the
erosion rate was found to continually increase from a zero value at a zero
impingement angle to a maximum value at normal impingement angle (90°).
Typical curves for these two modes of erosion are shown in Fig. 1. It was

concluded in the early studies that the mechanical properties of the eroded by

]
.4 4

material determined the type of erosion that prevailed.
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From the preceding literature review, it is clear that the effect of :5 !
the target temperature on the resulting erosion is not completely understood :ka?
and the experimental results are lacking for both brittle and ductile S-:?
material erosion at high temperatures. In addition, there is not enough E;Ef
experimental data to study the effect of particle size on material erosion. : ﬁ—h
There are several inconsistencies among the existing experimental results ;g::s
and there is very little data available for particles larger than 200 micron §§3§
in diameter. The experimental work in the present study was conducted to f. >
investigate the effect of temperature and particle size on the erosion of ;t :r
ductile and brittle materials. ;? :
i
EXPERIMENTAL SET-UP E
In the present study, the existing high temperature erosion test Eég;;
facility at the University of Cincinnati was used to investigate the effect N2
of particle size and sample temperature on ductile and brittle material ;ﬁém
erosion. The erosion of stainless steel (AM 355) alloy, a material used in 5\ m
turbomachinery blading, by silica sand up to 1981 microns in diameter was ‘J%f
investigated. The tests were conducted at different temperatures ranging 3;§E
between standard sea level and 550°C. In addition the particle ;;:E‘
ol
concentrations were varied between 0.014 mg/cm3 and 0.5 mg/cm3 since there v~’.'
RN
was no prior data available in this range. The effect of temperature on :&EEE
erosion was also studied for pure A1203 (brittle material) using silica sand ﬁt;\
impacting particles. The tests were conducted at five different impingement 2;1-
angles (20°, 30°, U45°, 60° and 90°)., The properties of A1203 material are g;géi
%

presented in Table 2, and the analysis for fly ash particles for different
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o) *
types of silica sand are shown in Tables 3, 4, 5 and 6. The test conditions E? *,
o 3:
are summarized in Table 7. a.gﬁ
The high temperature erosion test facility was designed to provide ‘¢; 5
'.\ ]
erosion and rebound data in the range of operating temperatures experienced : ;ij
{4
in compressors and turbines. For that purpose, this facility has been W
designated to operate at a test section temperature in the range of ambient :e:‘
R 2
N0
to 1093°C (2000°F). 1In addition to the high temperatures, the facility ::;5‘
. . o
\*‘
properly simulates all erosion parameters which were found to be important s
< SN
from aerodynamics point of view as it was previously established at ambient -:} :_
- ‘:’\
'
temperatures erosion wind tunnel. These parameters include particle R :¢:
velocity, angle of impact, particle size, particle concentration, and sample éﬁ#-i
size. Close attention was given to aerodynamic effects to insure that :\:J.
AR
important parameters, such as angle of attack, are not masked or altered. ;:ﬁ:‘
b
A5
A schematic of the test apparatus is shown in Fig. 2; it consists of -
the following components: particle feeder (A), main air supply pipe (B), X RN
\.§\\
19858
combustor (C), particle preheater (D), particle injector (E), acceleration \ t
N '
tunnel (F), test section (G), and exhaust tank (H). 22
. > P
The equipment functions as follows. A measwred amount of abrasive grit :{:2{
RO,
of a given constituency is placed into the particle feeder (A). The :{;2
5
particles are fed into a secondary air source and blown up to the particle
a .- »
preheater (D), and then to the injector (E), where they mix with the main AN
-~ 4
RO
air supply (B), which i{s heated by the combustor (C). The particles are PN,
c.f:,
Kodn
then accelerated by the high-velocity air in a constant-area steam-cooled
duct (F) and impact the specimen in the test section (G). The particulate 2{:?
f,:-’.‘f.
flow i3 then mixed with the coolant and dumped in the exhaust tank. This :?:“:
f.;bq'
facility is capable of supplying erosion data at temperatures in the range .
« e
\"."\
R
dﬁj\
\;\ e
v
10
RS
i . e e
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of ambient to 1093°C (2000°F). The expected range of testing parameters is

given in Table A, but is not necessarily restricted to the tabulated values.

TABLE A - EROSION PARAMETERS

Parameters

Temperature 10 to 1093°C (50 to 2000°F)
Particle Angle of Attack 0 to 90 degree

Particle Velocity . 60 t0 450 m/s (200 to 1500 ft/sec)
Particle Concentration 0 to 5 percent

Particle Size 1 to 2000 microns

Particle Type and Material Silica sand, alumina, ash
Specimen Size 6.35 to 25.4 mm (1/4 to 1 in.)
Specimen Material Various Jet Engine Materials

In the high temperature erosion facility, the particle velocity is
controlled by adjusting the tunnel air flow, while the impingement angle is
set by rotating the sample relative to the flow stream. The sample
temperature is controlled through the combustor heating the flow stream
which {in turn affects the material sample temperature. Further description

of the facility may be found in reference [53].
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e
RESULTS AND DISCUSSION ;:}-E{
"- -f
The erosion results are presented for the erosion volume parameter PN
e r—a]
which i{s defined as the volume of material removed per unit weight of the ‘.":4
: "
Wht
impacting particle. This was preferred over the erosion mass parameter as :"‘:
h ot
it provides a better estimate of blade damage with respect to the change of !Le{,}g;
blade profile. Y
a) Effect of Amount of Impacting Particles '4""'2
s
¢
The results of erosion testing for steel alloy (AM355) and ceramic -
(A1203) are presented in Fig. 3 at the corresponding maximum erosive tf.\
L;‘Q "

\.
impingement angles of attack, (30° for AM355 and 90° for A1203). At ambient ;:‘
PRt
temperature, the velocity of impacting silica sand particles was 70 m/s (250 £y,
:‘:\E"
ft/sec) and the particle diameters ranged between 125~177 microns. ;'f_:{
.'\ ]
The amount of impacting particles was gradually increased, and the resulting :’:i-.
erosion was measured. The results which are presented in Fig. 3 show that ., ,::‘
AL
the ceramic (A1203) takes approximately six times the amount of particles to l-:%:s
oty

]
reach steady state erosion rate compared to the steel alloy (AM355). g_’;_}'&
,'\-.-f:.-.'
r\:: ..
b) Effect of Particle Velocity ::\
.'\l\-'
Erosion loss is known to be proportional to some exponent 'n' of the T3
particle velocity at a given temperature and angle of attack. :.'-.’:

™
E V., n ::.'}
1 1 v .‘.\'.‘v"
E_ - (V_] .:\" s

2 2 23

where: E, = erosfon rate at velocity V, e
el
E, = erosion rate at velocity V.. }\;,‘:
. l‘,\

)
ER0
- Y.
.f.\.:\-
‘l\' \I
\.\ \ )
A Y
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The velocity index 'n' can be calculated from the experimental results using
the above equation, or it can be determined from the logarithmic plots of
the erosion versus velocity.

The experimental results for stainless steel erosion are presented for
fly ash and sand particles in Figures 4 through 14, The values of 'n' are

computed in Tables 8 through 10. The velocity index 'n' for A1203 erosion

by silica sand (125 - 177 microns) was found to be 0.468 at room
temperature, 90° angle of attack, and particle velocities of 76, 99, and 137

m/sec.

¢c) Effect of Particle Size

Some investigators such as Sage and Tilly [37], Grant [26] and Kotwal
[38] nave demonstrated that at a given velocity, the erosion rate increased
with the particle size until the onset of 'saturation plateau'. In the
present investigation it was observed that the erosion rates continuously
increased up to the maximum particle size of 1981 microns which was used in
this study. Therefore, no 'saturation plateau' in regard to particle sizes
was observed in this study, which extends over a larger range of particle
sizes compared to the previous investigation. Figures 15 through 19 present
the pertinent results, from which one can conclude that at room temperature
and 30° impingement angle, the erosion rate is proportional to the exponent
of the particle sizes. The value of the exponent 'a' were found to be 0.568
for the silica sand particles ranging in size between 125 and 308 microns,
and 0.696 for the silica sand particles with sizes in the range between 950

and 1981 microns.
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d) Effect of Temperature

Experimental results were obtained for the erosion rate of steel alloy

|

(AM355) at two different temperatures (316°C and 538°C). Figures 20-26 show

‘.\“s.v

-

-4
J‘

plots of the erosion volume parameter versus the angle of attack at the two

ﬂl\

 ow
&y
e

temperatures for different particle velocities. One can observe an
increasing trend in the erosion rate with increased temperature in all the
figures. The increase in the erosion rate due to temperature rise are much

larger at the maximum erosive impingement angle (around 30°) than all other

X
/4

impingement angles. This is particularly true for the fly ash particle and

rY

o

)

o)
"
.

\J
]
"

large silica sand (over 950 microns) whereas the difference is very small

X/

for sand particles smaller than 600 microns.
Erosion tests were also performed in order to study the effect of the

temperature on the erosion of A120 (a brittle material) using silica sand

3
particles at particle velocity of 137 m/s (450 ft/sec). The results of
erosion volume parameter which are given in Fig. 27 at four different
temperatures of 20°C (68°F), 316°C (600°F), 427°C (800°C), and 538°C
(1000°F) were obtained. One can see that the erosion rate at 316°C (600°F)
is a little higher than that at room temperature, but for temperatures above
316°C and up to 538°C (1000°F), the erosion rate decreases linearly with the

temperature. One can therefore conclude the effect of temperature on A1203

(brittle materials) is totally different from that of steel alloy.
Additional measurements are needed to determine the temperature at which
this trend will change and the erosion rate will increase again with

temperature.

14
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e) Erfect of Particle Concentration

It has been observed experimentally by several investigators that a
decrease in particle concentration led to an increase in the erosion rate.
In order to investigate this effect, petroleum product particles were used
to impact a steel alloy at room temperature. Four different sizes (1/8",
3/716", 5/16™ and 7/16") of particle feeder nozzle were used to obtain
different particle concentrations. the results are presented in Fig. 28

which shows that the erosion rate decreases with increased particle

concentration above 0.25 mgm/cm3 (Figs. 28 and 29), i.e., when the particle
mass flow ratio is greater than 16% of the total mass flow. This result
suggests that using the smallest size of particle feeder nozzle is desirable
to minimize the p 3s3ible particle interaction during the testing in the

erosion wind tunnel.

f) Effect of Angle of Attack

This effect was studied for two different materials, namely steel alloy

(AM355) and Al by testing the steel alloy at nine different angles of

203+

attack and the A120 at five different angles of attack. An examination of

3
Figs. 30 and 31 for the steel alloy reveals that the erosion rate shows a
typical trend of ductile behavior with the impingement angle. The erosion
rate increases to a maximum at about 25° and then decreases to a residual
value at the normal impact. This behavior was always observed in the case
of the steel alloy, independent of the particle velocity, the temperature,
or the type of impinging particles (Figs. 4, 5, 7, 9, 12, 14, 16, 17, 18 and
20-26. A typical trend of brittle behavior, i.e the erosion rate increases

with increased angle of attack, can be seen in Fig. 32 for A1203.
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Erosion Prediction Model for Steel Alloy (AM355)

Assuming that the erosion process is dependent on two mechanisms: one
at low angle of attack, one at high angle of attack, and a combination of
the two at intermediate approach angles, Grant and Tabakoff [26] developed a
semi-empirical equation for predicting ductile erosion at room temperature.

The relationship for erosion rate may be expressed as:
E =K, £(8,) (Vo -v2 ) + £V, ) (1)
1 1 1T 2T 1N

where: E

Erosion weight loss per unit mass of impacting particles,

K, = Material constant,

f(81) = Empirical function of ﬁarticle impact angle,

V1T = Tangential component of incoming particle velocity,
VZT = Tangential component of rebounding particle velocity,
f(V1N) = Component of erosion due to the normal component of

velocity.
In the above equation, the first term represents the erosion mechanism
at low angles of attack, while the second term represents the erosion
mechanism at normal impact.

At normal impact, the erosion can be approximated by:

n
f(V1N) = K (V1sin81) (1)

3

The erosion rate was found experimentally at B1 = 90° and the exponent

"n" and the constant K3 were then determined from equation (1).

By defining the tangential restitution ratio as

R, = V2T/V1

T T

One can write
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2 2 2
E = K1 f(81) V1 cos”8, [ - RT] + f(V1N) (2)
i with
90 2
r(e1) = [1 +CK (K12 sin (B—o 81)] (3)
where

Bo = angle of attack where maximum erosion occurs

l CK=1 B8 <28,
CK=0 B, >28,

K12 = Material constant.

To find the other constants K1 and K the following two restitution ratios

12°
were used:
For silica sand (125-177) impacting steel alloy:

RT = 1.0 - 0,0017 V131n81

For fly ash impacting steel alloy (Tabakoff and Malak [51]):

RT = 1 + 0,15987 B1 - 2.14461 B? + 1,.74705 8?

where the angle of attack B1 in the above equations is measured in radians.

12° K3 and exponent "n" as determined from the

The constants K1. K
stainless steel experimental erosion measurements at the different angles of
attack are given {n Table 11,

Figures 33 through 36 present the computed results using the new models
and the corresponding test resuits. Figures 33 and 34 show that the new

prediction models agree with the experiments for fly ash particles at

temperatures of 600°F and 1000°F when the particle velocity is below
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g
e
700 ft/sec. The comparison between the prediction model and the ;ﬁi
)
experimental results using sand particles (125-177 microns) is presenﬁed in Ry
Figs. 35 and 36 for gas temperatures of 600°F and 1000° respectively. From & \f
the two figures it can be seen that the agreement is less satisfactory at &:EE
higher parﬁicle velocities. AN
L
Scanning Electron Microscopy Studies of Abrasive Particles é?;g{
el
u And Eroded Surfaces ;13;
One of the objectives of the present study was to observe the abrasive E?EEﬁA
' particles and topography of eroded specimens at different angles of attack, §§§§
particle velocities and fluid temperatures. The observations were made -?:25
using a scanning electron microscope ;(25 kw Cambridge Stereoscan 600) :é:&i
equipped with an energy dispersive X-ray analyzer (EDAX). Figures 37, 38 EEiE:
COAN
and 39 show the scanning electron micrographs of three samples of fly ash, AN
petroleum product and silica sand particles used in the present study. It E}ﬂri
CACALS
is seen from Fig. 37 that the fly ash is composed of discrete, spherical ;5:;;
DA
particles. The observations under the microscope revealed that the majority '{;?;’
of the particles are smaller than 30 microns. The scanning electron ;g;g
micrograph of petroleum product and silica abrasive are shown in Figs. 38 ::"-:::'-

P
S %
Farel

and 39. The petroleum particles are spherical and 50 microns in diameter.

The silica particles characteristics were found to be very different :i:,:
LSS
depending on the particle sizes. The micrograph of the 150 microns silica : (:»
)% LN
particles shows that their corners are not very sharp for this particle i
A A
size, however, larger particles were found to have sharp corners (Fig. 39). 3§:$:
Y
:\'-'-:;:
Figure 40 shows scanning electron micrographs of two untested samples, 03\,
ol
\ )
] e
one of steel alloy (AM355) and the other of ceramic A12O3. Figure 41 shows .
RN
the micrographs of the A1203 and AM355 steel eroded surfaces after being :aﬁﬁﬁ.
el
e
18
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I
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exposed to petroleum particles impacting at 30° angle of attack. Figures
42a through U42e show the eroded surfaces of five steel alloy (AM355)
specimens impacted by fly ash particles at 30° angle of attack. The test
temperatures were 60°F, 600°F and 1000°F, and the velocities of 325 ft/sec,
400 ft/sec, 700 ft/sec and 1000 ft/sec. The general appearance »f the
eroded surfaces is that of intensive surface materjal flow and plastic
deformation. Scanning electron micrographs of steel alloy surface impacted
at 30° angle of attack by 150 and 275 microns silica sand, at 325 ft/sec and
room temperature (70°F) are shown in Fig. 43. From the inspection of these
micrographs,.it is clear that under these conditions the surface impacted by
the larger particles (275 microns) has deteriorated more than the one
impacted by the smaller particles (150 microns). Additional documentation
of the influence of the particle size on the surface destruction for steel
samples are shown in Figs. 44 and 45. Three different silica sand particle
sizes (150, 580 and 1981 microns) were used. The test conditions were as
follows: particle velocities of 325, 400 and 700 ft/sec, temperature of
T70°F and 1000°F and 30° angle of attack. The scanning electron micrographs
in Fig. 44 demonstrates the increase in the surface erosion damage with
increased particle velocities when the rest of the test conditions are
unchanged. Figure 45 shows that the maximum surface damage is produced by
the largest particles at the same ambient temperatures, particle velocities

and the angles of attack. Figures 46 and 47 show the eroded surfaces of

ceramic (A1203) material due to silica sand particle impacts normal to the

surface at two different temperatures. Figure 46 shows two micrographs of
the eroded surfaces impacted by 150 microns silica sand particles at 325 and

450 ft/sec at maximum angle of attack of 90 degrees and ambient temperature

of 70°F. Inspection of the two eroded surfaces reveals that the relatively
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small increase in the particle velocities does not significantly affect the
erosion damage of the ceramic material. Micrographs of another two ceramic
surfaces eroded at higher temperatures of 600°F and 1000°F by 150 microns
solid particles are shown in Fig. 47. Detailed study of the two scanning
micrograph surfaces shows that the increase in the temperature from 600°F to

1000°F did not increase the erosion damage.

SUMMARY AND CONCLUSIONS
1. The velocity exponent 'n' in the erosion prediction model is dependent
on the temperature, angle of attack, particle property and target

material characteristics. The velocity exponent 'n' of the A1203 was

considerably low compared to the steel alloy.

2. The experimental results of the effect of particle size on the erosion
rate did not confirm the theory of the so-called by many authors
'saturation plateau'. The results which were obtained for the particle
sizes ranging between 2 and 1981 microns at a given particle velocity
shows that the erosion rate is proportional to the size of particles.

3. The effect of temperature on the erosion rate was found to be dependent
on the target material. The steel alloy exhibited an increasing
erosion rate with increasing temperature, while the ceramic showed a
decreasing erosion rate with the temperatures in the range between
316°C (600°F) and 538°C (1000°F).

y, The present measurements confirmed the earlier observations by Grant
[26] regarding the negligible influence of the particle concentration

3

on the erosion rate. While this was true up to 0.014 mgm/cm~ particle
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concentrations, it was found that there is a decreasing trend of dﬁkbq

» w‘.‘.“

fagh e

erosion by increasing the concentrations above 0.25 mgm/cm3. XM

5. Grant's [26] erosion prediction models give results that are in ';‘qb‘
agreement with the experimental results at particle velocities below v 2*

700 ft/sec.

6. Scanning Electron Micrographs proved that the volume loss of steel

alloy (AM355) is larger than that of ceramic (A1203) and the s

conclusions 1 and 2. =
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TABLE 2. ANALYSIS OF A1203 TARGET MATERIAL ?:4{

PURITY 99.8% A1203

DENSITY 3.88 GRAMS/CC (97.5% OF THEORETICAL) fti&*
POROSITY IMPERVIOUS TO GASES ~

HARDNESS 91.5 - 93.5 ROCKWELL A

L S

A, 4 Ay Ay

P #1
9
N

TRANSVERSE STRENGTH 35,000 - 60,000 PSI

AR

A A
I

[y

COMPRESSIVE STRENGTH 400,000 ~ 450,000 PSI

data el
~I

OXIDATION RESISTANCE OK TO OVER 3000 DEGREES F

CORROSION RESISTANCE RESISTANT TO MOST ACID AND ALKALINE BN
SOLUTIONS. SLIGHTLY ATTACKED BY i
MOLTEN ALKALIES NS

THERMAL CONDUCTIVITY 16.5 - 17.0 BTU/HR/FT2/°F/FT _S“

6

COEFFICIENT OF THERMAL EXPANSION 3.9 X 10 ° °f (70° ~ 1000°F) :dﬁg\:

.\{;
COEFFICIENT OF FRICTION AGAINST ITSELF: .06 - WET; 0.02 - DRY Y

DIELECTRIC STRENGTH 230 VOLTS/MIL ?\j:'
(ELECTRICAL RESISTANCE) o




DENSITY
PARTICLE SIZE

DENSITY
PARTICLE SIZE

COMPOSITION

TABLE 3. ANALYSIS OF FLY ASH PARTICLE

2.0641 gm/cc
1 & 40 microns

COMPOSITION PERCENT WEIGHT
SiO2 57.09 (%)
A1203 28.36
Tio2 1.78
Fe203 5.20
Cao 0.42
Mgo 0.81
KZO 2.11
NaZO 0.37
SO 0. U

3 5
P203 0.16
Undetermined 3.25

TABLE 4. ANALYSIS OF SILICA SAND PARTICLE

(CENTRAL CO0.)

2.6395 gm/cc
125 - 177, 243 - 308 microns

PERCENT WEIGHT

99.6 (%)
0.018
0.028
0.27
0.10




'l- 4', .'
ARy
alyly)
o
N
TABLE 5. ANALYSIS OF FLINT SILICA SAND PARTICLE s
(OTTAWA CO.) LN
ey
DENSITY 2.64106 gm/cc S
PARTICLE SIZE 560 - 600 microns o
&&*-.
~
COMPOSITION PERCENT WEIGHT . *iﬁ
' et
$10, 98.0 (%) .
o,
Fe,0, 0.07 i_*_'.s"i‘
& ".. -
T10, 0.04 ):.?3:
A1,0, 1.50 By
Ca0 0.08 P,
LOI 0.25 :T.?_:.-;;:
Mgo 0.06 ;.‘._1.;;.
Color White rf\$
N
a
TABLE 6. ANALYSIS OF 4 FLINT ABRASIVE SILICA SAND PARTICLE I
( INDEPENDENT CO.) PR
LT
LN
KAy
DENSITY 2.61371 gm/ce eree
PARTICLE SIZE 950 - 1000, 1651 - 1981 microns g
Ay
COMPOSITION PERCENT WEIGHT , ::.‘\\-::'\“;
. >
510, 97.7 (%) ;f:.;;:;
Fe,0, 0.30 al3 0
A1,0, 0.45
LOI 0.50
CaCo3 0.55
¢ 0.0004
Hardness (HOH's) 6.5 - 7%
PH Factor 6.55% TR
Moisture (H,0) 0.02% AR
Color Yellow :-':"::j;".
..\
N
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TABLE 11. EROSION MODEL CONSTANTS

PARTICLE TEMP ( £) Vp(£PS) K K K 'n'
1 12 3
-6
Fly Ash 70 325 1.94x10 0.2383 0.024
-6 -8
" 600 400-700 1.37x10 0.1945 1.3x10 2.37
-6 -8
1000 2,14x10 0.2165 1.3x10 2.37
-6 -13
" 1000 400-700 1.54x10 0.194 1.45x10 4,112
) -6 -13
1000 3.31x10 0.1516 1.45x10 4,112
-6 -6
Silica Sand 70 325-500 7.765x10 0.0299 5.052x10 1.8303
(126 - 177) -6 =7
(126 - 177) 600 400-700  6.46x10 -0.0037 3.0x10 2.27
-6 -7
1000 400-700 7.065x10 0.02625 1.07x10  2.449
38
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FIG. 1. EFFECT OF ANGLES OF ATTACK
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EROSION VOLUME PARAMETER IN CM>/GM X 10°

1.6
PARTICLE: FLY ASH
PARTICLE VELOCITY:
122 M/SEC (400 FT/SEC)
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FIG. 4 EFFECT OF PARTICLE VELOCITY AND ANGLE OF ATTACK
ON AM355 ALLOY AT 316°C (600°F)
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1.6

1.2

1.0

008

0.4

0

PARTICLE: FLY ASH
PARTICLE VELOCITY:

A D 122M/SEC (400FT/SEC)
O 213M/SEC (700FT/SEC)
O 305m/SEC (1000FT/SEC)

/N
A
A
@ N
()
@
C
O - @
—
1 1 L 1 1 1 A Y D

FIG.

10 20 30 40 50 60 70 80 90
ANGLE OF ATTACK IN DEGREES

5. EFFECT OF PARTICLE VELOCITY AND ANGLE
OF ATTACK ON aM355 ALLOY AT 538°C (1000°F)
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PARTICLE: SILICA SAND

2.8+ PARTICLE SIZE: 125 - 177 MICRONS
PARTICLE VELOCITY:
2.6 F O 99M/SEC (325FT/SEC)
O 152M/SEC (500FT/SEC)
2.4 F
2.2
2.0
1.8+
' 1.6 F
1.4

EROSION VOLUME PARAMETER IN CMB/GM X lOa
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FIG. 7. EFFECT OF PARTICLE VELOCITY AND ANGLE OF
ATTACK ON AM355 ALLOY AT ROCOM TEMPERATURE
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PARTICLE: SILICA SAND ks
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FIG. 9. EFFECT OF PARTICLE VELOCITY AND ANGLE
OF ATTAC ¢ ON AM355 ALLOY AT 316°C (&00°F)
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ATTACK ON AM355 ALLOY AT 31é°C (600°F)
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0.6 - : PARTICLE: SILICA SAND
PARTICLE SIZE: 125 - 177 MICRONS
ANGLE OF ATTACK: 90¢°
0.5 p—
< 0.4 |-
o
X
=
[&]
'l\\
5 0.3 I~
(&)
z
[s 4
w
—
wi
3
<<
= 0.2
a
w
P -
=
-
o
>
=z
o
(7]
o
[+ 4
w
0.1 | | | L1 | ]
S0 60 70 80 90 100 150 200
PARTICLE VELOCITIES IN M/SEC
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PARTICLE: SILICA SAND o
2.9 | PARTICLE VELOCITY: 122M/SEC (4OOFT/SEC) R
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